
Background

At the MUG Christmas market, RISC

OS Bits were demonstrating their NVMe

driver software. It was incomplete - the

module had not yet been incorporated into

the rom - but looked very promising.

At the WROCC Zoom meeting in

December Andy Marks explained that the

NVMe driver was still being optimised but

was already up to SATA speeds.

I have a Waveshare IO-Mini-B board

with an NVME slot and a 512GB drive as

well as CM4 with eMMc storage. I want

to prepare the NVMe drive for when RISC

OS can read such discs. There will be four

partitions on the drive: a FAT partition for

Linux firmware, a filecore partition (for

RISC OS), a larger FAT partition (for file

sharing between RISC OS and Linux) and

an ext4 partition (for Linux).

Why?

The intention is to use the NVMe

drive for both Linux and RISC OS with a

switch to select which one you want to use.

A 4-partition drive allows data sharing.

How do I get there?

There are several steps of preparation,

which have already been described

(WROCC Nov 2023 ‘Putting Linux on

the PiRO Qube’ and Archive 25:5 ‘Adding

a switch to the 4té’) that get a dual boot

machine either into RISC OS with its hard

disc on eMMc or into Linux (using a Store

‘n’ Stay Nano 32GB USB drive).

Summarising these steps, the first step

is to flash the eMMc memory on the CM4

with a standard RISC OS distro with a 4

Jan 2024 daily rom (i.e. one which is

eMMc-aware). Second step is to use

HForm to reformat the eMMc to provide

a 14GB (vice 1800MB) filecore partition

and a 80MB (vice 48MB) FAT partition

and to copy back the HardDisc4 files

(except Loader) and the firmware files.

Third step is to put a standard Bullseye

Linux distro onto the USB drive and to

edit the eMMc firmware files to provide a

RISC OS/Linux dual boot system.

How to do this is described below and

means that we have a ‘dual boot’ machine.

1 �How to ... format NVMe

How to ... format NVMe

console=serial0,115200 console=tty1 root=PARTUUID=cf3c2bea-02 rootfstype=ext4
elevator=deadline fsck.repair=yes rootwait quiet init=/usr/lib/raspberrypi-sys-mods/
firstboot splash plymouth.ignore-serial-consoles

Above: The contents of ‘CMDLINE/TXT’ on the standard Linux distro - the location of the root file

system is specified by a partition UUID, highlighted above. For a particular disk image this magic number is

known. If you specify the correct partition UUID for an ext4 partition on a drive then Linux will mount

that partition as its ‘root’ drive ‘/’ and then look at ‘/etc/fstab’ for the UUID of the partition from which it

will load its kernel and mount as ‘/boot’. The text highlighted in green will set up things like time zone and

language and amend itself so that it will, on next boot, expand the ‘ext4’ partition to fill the drive.When it

does this the UUID will change and the reference to it in ‘/boot/CMDLINE.TXT’ and in ‘/etc/fstab’ will

be updated on the same drive (i.e. on the Linux boot drive not on the eMMc).

Whereas RISC OS requires very few, if any, commands in the CMDLINE/TXT file (disable_gamma and

disable_mode_changes for example), Linux requires lots of stuff, which RISC OS can happily ignore.

The partition UUID is a unique identifier for a partition on any drive (USB, SD, eMMc or NVMe).

Below: The amended contents of ‘CMDLINE/TXT’ on the eMMc FAT partition (init to be removed).

disable_gamma console=serial0,115200 console=tty1 root=PARTUUID=cf3c2bea-02
rootfstype=ext4 elevator=deadline fsck.repair=yes rootwait quiet init=/usr/lib/raspi-
config/init_resize.sh splash plymouth.ignore-serial-consoles

Where are we now?

Machine start up uses instructions in

the eMMc firmware either to load the

RISC OS ROM or (with button pressed)

to mount the Linux root file system (which

contains ‘/etc/fstab’ which specifies where

the Linux kernel is to found).

The changes to the firmware are

summarised above. To keep things simple

I shall now be making only tiny changes to

the eMMc storage - a few tweaks to the file

CMDLINE.TXT to identify different UUIDs

for the Linux root filesystem and I shall be

making these changes in RISC OS via the

file Boot:Loader.CMDLINE/TXT.

We now have a 10GB Linux partition

on the USB drive (with its kernel in the

FAT partition on that drive) and a 15GB

filecore partition on the eMMc (with its

ROM in the FAT partition on that drive).

For simplicity, the contents of both these

FAT partitions are identical.

What next?

I want to prepare an NVMe drive but

RISC OS cannot yet ‘see’ such drives. My

solution is to use a USB ‘caddy’ into

which I mount the NVMe drive. Suitable

devices are listed below. This is the drive

we are going to prepare: once we have

done so then it can be mounted in its PCIe

slot on the IO board (Linux will be able to

see it and to mount its root filesystem on it

and load its kernel from it. There will be a

RISC OS filecore partition on it as well.)

In RISC OS use HForm to format a

filecore partition of about 110GB (use

fewer cylinders than it suggests) on the

NVMe drive. Then use !SystemDisc to

add a 300MB FAT partition embedded in

the filecore partition.

Now boot into Linux and use GPartEd

to add a 20GB FAT partition (and format

it as FAT32) and a 19GB ext4 partition

(and format it as ‘ext4’). Also format the

300MB FAT partition as ‘FAT32’.

Add a small file to each FAT partition

as follows: 300MB.txt which contains:

This 300MB partition has Linux firmware

20GB.txt which contains:

This 20GB partition is for file sharing

eMMc.txt which contains:

This 80MB partition controls startup.

2 �How to ... format NVMe

[gpio5=1]
fake_vsync_isr=1
framebuffer_swap=0
gpu_mem=64
init_emmc_clock=100000000
ramfsfile=CMOS
ramfsaddr=0x508000
kernel=RISCOS.IMG
device_tree=
hdmi_drive=2
hdmi_blanking=1
disable_overscan=1
[pi4]
enable_gic=1
[all]
[gpio5=0]
Additional overlays and parameters are
documented /boot/overlays/README
Enable audio (loads snd_bcm2835)
dtparam=audio=on
[pi4]
Enable DRM VC4 V3D driver on top of the
dispmanx display stack
dtoverlay=vc4-fkms-v3d
max_framebuffers=2
[all]
#dtoverlay=vc4-fkms-v3d

The edited CONFIG/TXT file - the conditional

statements are in square brackets with the RISC OS

bit and Linux bit (almost empty) highlighted.

https://www.amazon.co.uk/dp/B07W44F9BN?psc=1&ref=ppx_yo2ov_dt_b_product_details

Aluminum M.2 NVME SSD Enclosure, USB 3.1 Gen 2 to NGFF NVME PCI-E M-Key Solid State

Drive External Enclosure, With Type C-C Cable - price £15.99

https://www.amazon.co.uk/dp/B07XVR1KKR?psc=1&ref=ppx_yo2ov_dt_b_product_details

SABRENT 2242 M.2 NVMe SSD 512gb, SSD 1700MB/s Read, 42mm PCIe 3.0 X4, Internal Solid

State Drive, High Performance Compatible with All PCs, NUCs, and Laptops (SB-1342-512) - price

£59.99

The purpose of these files is to make

double sure you don’t get confused as I

find Linux’s method of referring to

different drives bizarre so the first thing to

do is to make sure we know which drive is

what.

Problem

The method above will first create

partition 1 as FAT, embedded within the

second ‘ADFS’ partition, numbered as

partition 4, with partitions 2 and 3 empty

(SystemDisc will create a Master Boot

Record - MBR - describing this).

This is the standard Pi distro approach

allowing the image file Boot:Loader to see

the FAT partition with the firmware.

In Linux the third partition will then

be created as partition 2 and the fourth

partition as partition 3. This is not where

we want to end up as it would confuse

Linux. However there is a command

which will write just the 512 bytes

containing the partition table (the MBR)

so that we can adjust it to list the partitions

in the right order:

Using the ‘dd’ command we save the

partition table and work out how to tinker

with it to get the partitions in order:

 We’ll examine it using a short BASIC

programme ‘MBRSort’ which will show us

(and decode) the partition table. This

programme reads the 16-byte entries in the

MBR which define the start and end sector

of each partition and lets us reassemble

them in the correct order.

This shows us that the order on disc is

p1, p4, p3 and p2 and so the programme

‘MBRSort’ rearranges these into this order

in the MBR and the result can be written

back to ‘/dev/sda’. After writing this,

reboot immediately back into Linux.

So now there are two USB drives ‘sda’

which is still almost blank (only an empty

Boot:Loader file pointing to the 300MB

FAT partition) plus a large blank FAT

partition and a large blank ext4 partition

and ‘sdb’ that has a standard ‘Linux’ distro

on it.

Now we can copy the Linux root

partition from ‘/dev/sdb2’ to ‘/dev/sda4’

using the ‘dd’ command. We can also copy

the firmware files in ‘/dev/sdb1’ to ‘/dev/

sda1’. The UUID of the two ‘Linux’

partitions will be different so we need to

3 �How to ... format NVMe

The ‘dd’ command writes the 512 byte MBR to a

file we can copy somewhere visible to RISC OS.

 10 : REM >MBRSort
 20 : DIM mem% 3000
 30 : OSCLI(“Load mbr9/bak ” +STR$~(mem%))
 40 : OSCLI(“Save p1 ”+STR$~(mem%+&1BE)+“ +10”)
 50 : OSCLI(“Save p4 ”+STR$~(mem%+&1EE)+“ +10”)
 60 : OSCLI(“Save p2 ”+STR$~(mem%+&1CE)+“ +10”)
 70 : OSCLI(“Save p3 ”+STR$~(mem%+&1DE)+“ +10”)
 80 : PRINT “Partition 1”
 90 : PROCshw(&1BE)
 100 : PRINT “Partition 2”
 110 : PROCshw(&1CE)
 120 : PRINT “Partition 3”
 130 : PROCshw(&1DE)
 140 : PRINT “Partition 4”
 150 : PROCshw(&1EE)
 160 : OSCLI(“Load p1 ” +STR$~(mem%+&1BE))
 170 : OSCLI(“Load p4 ” +STR$~(mem%+&1CE))
 180 : OSCLI(“Load p3 ” +STR$~(mem%+&1DE))
 190 : OSCLI(“Load p2 ” +STR$~(mem%+&1EE))
 200 : OSCLI(“Save mbr9r/bak ”+STR$~(mem%)+“ +200”)
 210 : END
 220 : DEFPROCshw(m%)
 230 : PRINT “bootable?”;mem%?m%
 240 : PRINT “Partition type ”;mem%?(m%+4)
 250 : h%=mem%?(m%+1)
 260 : s%=mem%?(m%+2)
 270 : hpc%=136
 280 : spt%=63
 290 : c%=mem%?(m%+3)
 300 : c%+=(s% AND &C0)<<2
 310 : s%=s% AND &3F
 320 : cc=1.0*c%*hpc%*h%*spt%/(s%-1)
 330 : PRINT “First sector at Head ”;h%;“ Cyl ”;c%;
 340 : PRINT “ Sector”;s%;“ LBA=”;cc
 350 : h%=mem%?(m%+5)
 360 : s%=mem%?(m%+6)
 370 : c%=mem%?(m%+7)
 380 : c%+=(s% AND &C0)<<2
 390 : s%=s% AND &3F
 400 : cc=1.0*c%*hpc%*h%*spt%/(s%-1)
 410 : PRINT “Last sector at Head ”;h%;“ Cyl ”;c%;
 420 : PRINT “ Sector”;s%;“ LBA=”;cc
 430 : PRINT “LBA first sec=”;mem%!(m%+8)
 440 : PRINT “# sectors=”;mem%!(m%+12)
 450 : PRINT “LBA last sec=”;mem%!(m%+12) +mem%!(m%+8)
 460 : ENDPROC

note down the UUID of the ext4 partition

on the NVMe drive in its USB caddy -

here it is ‘e4d2144c-04’ - by using the ‘ls’

command.

So ... if we change the UUID in the

file ‘CMDLINE.TXT’ in the eMMc to identify

this new UUID then Linux will load from

the NVMe drive? Not quite. It decides

where to load the kernel by reading the

contents of file ‘/etc/fstab’ on its root file

system so whilst it loads its root file system

from the NVMe drive it still loads its

kernel from the 32GB USB drive.

So we need to edit the file ‘/etc/fstab’

using the command ‘sudo gedit /etc/fstab’ to

specify the new UUID.

Now if we remove the 32GB USB pen

drive and reboot into Linux it should load

the kernel from the NVMe drive.

4 �How to ... format NVMe

Above: The output from ‘MBRSort’ - partitions 1

and 4 are actually embedded together.

Below: here we copy the ‘Linux’ partition from

pen drive to NVMe drive (in its USB caddy), then

list the UUIDs of each USB drive and then use

‘lsblk’ to show that the Linux root file system and

boot drive are still both on the pen drive ‘sdb’. After

a reboot, sda4 will also be mounted.

>RUN
Partition 1

bootable?128
Partition type 11
First sector at Head 0 Cyl 0 Sector0 LBA=0
Last sector at Head 0 Cyl 0 Sector0 LBA=0
LBA first sec=176
sectors=614400
LBA last sec=614576

Partition 2
bootable?0
Partition type 131
First sector at Head 254 Cyl 1023 Sector2

 LBA=2.22632626E9
Last sector at Head 254 Cyl 1023 Sector2
LBA=2.22632626E9
LBA first sec=306569216
sectors=40960000
LBA last sec=347529216

Partition 3
bootable?0
Partition type 11
First sector at Head 254 Cyl 1023 Sector2
LBA=2.22632626E9
Last sector at Head 254 Cyl 1023 Sector2
LBA=2.22632626E9
LBA first sec=265609216
sectors=40960000
LBA last sec=306569216

Partition 4
bootable?0
Partition type 173
First sector at Head 0 Cyl 0 Sector0 LBA=0
Last sector at Head 0 Cyl 0 Sector0 LBA=0
LBA first sec=614576
sectors=264993424
LBA last sec=265608000

>

Linux is still loading the kernel from the USB drive

‘/dev/sdb1’

Now it is doing what we want and the 32GB USB

drive is no longer needed (and has been unplugged)

Let us recap: we started with a Linux

distro on a 32GB USB pen drive and a

normal RISC OS distro on the eMMc

storage:

5 �How to ... format NVMe

Above: drive /dev/mmcblk0 is the eMMc storage

with a RISC OS filecore partition containing a

Loader partition with the firmware for start up.

Below: drive /dev/sda is a 32GB pen drive

containing the standard Linux distro

Above right: the icon bar icon marked ‘20GB’ provides access to the filecore partition (using ADJUST)

or to one of the two FAT partitions. The partition marked ‘83’ (&83 = 131) is the Linux ‘ext4’ partition

which RISC OS can’t see. The next icon is amended to show SDFS::0 with a hard disc icon to reflect the

fact that it is non-removable eMMc storage. (See WROCC July 2023 ‘SDFS Icon + OmniDisc’)

Below: the view under RISC OS using PartMan of the four-partition NVMe drive in its USB caddy as

well as its view of the eMMc storage - the usual two-partition solution but with dual boot added.

We then prepared an NVMe drive with

four partitions by using a USB caddy.

Linux now boots from the NVMe drive (in

its USB caddy) and RISC OS can ‘see’ the

filecore partition on the NVMe drive (in

its USB caddy).

Now we can take the NVMe drive out

of the caddy and plug it in to the M.2

NVMe socket directly. Now Linux can still

see it and boot from it (with the switch

‘ON’) using the eMMc storage only to be

told where to find its root filesystem (on

the NVMe drive).

RISC OS cannot yet see the NVMe

drive but once a RISC OS driver exists, it

will be able to use the NVMe storage as its

boot drive and will then just use the

eMMc storage to load the rom.

Conclusion

The bright idea of having a four

partition NVMe drive seems to work.

Holding it in a USB caddy allows RISC

OS to see both FAT partitions and the

filecore partition. Once an NVMe driver

exists for RISC OS it should work at full

speed in the PCIe slot on the Pi

Foundation IO board or in its M.2 socket

on the Waveshare IO board.

Chris Hall chris@svrsig.org

6 �How to ... format NVMe

Above right: The USB caddy that holds the

NVMe drive - this makes it visible under RISC

OS, but only at USB2 speeds. Placed in a PCIe

slot, it will run at full speed under Linux.

Right: the NVMe drive is in a USB caddy but a

similar view would be obtained once an NVMe

driver for RISC OS is available.

